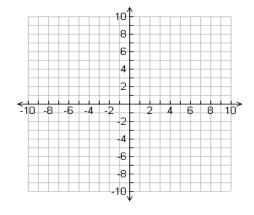
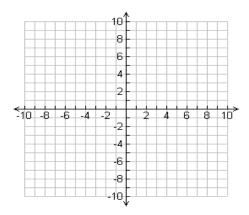
THE EQUATION OF A LINE


Graph these two lines – use a table of values, then plot the points:


a)
$$y = 2x + 3$$

X	у	(x,y)

b)
$$y = -3x - 2$$

x	y	(x,y)

What is the SLOPE of each line?

Where does each line cross the y-axis?

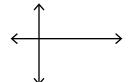
INTRODUCING...ONE WAY TO WRITE THE EQUATION OF A LINE:

$$y = mx + b$$
slope
$$y=mx + b$$
y-intercept

SLOPE Y-INTERCEPT FORM

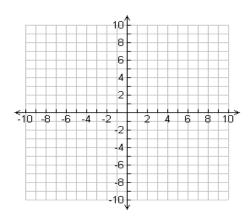
Slope y-intercept form of a linear equation is written in the form of _____ where m is the _____ and b is the _____.

Example: Give the slope and y-intercept of each.

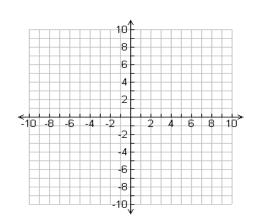

a)
$$y = 8x - 9$$

b)
$$y = -\frac{3}{4}x + 2$$
 Slope = _____ y-intercept = _____

The advantage of slope y-intercept form:


So...We can use the y = mx + b form to graph a line...

- First plot the ______
- Then use m = _____ to plot the _____



Example:

Graph
$$y = 4x - 5$$

Graph
$$y = -3x + 3$$

